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Abstract. Recent experimental and theoretical results indicate that optical phonons in 
a GaAs/Ga,  _,Al,As heterojunctions show strong spatial modulation. The form of the 
modulation has been controversial. However, it has recently been shown that the scalar 
potential of the electric field associated with the phonons is well described by the dielectric 
continuum model. We present the results of the first calculation of electron mobility in a 
GaAs/Ga,  _,AI,As superlattice which takes into account the confinement of both electrons 
and optical phonons. The electron mobility for a low-density non-degenerate electron gas 
is evaluated by iterative numerical solution of the linearised Boltzmann equation. The 
modulation of the phonons reduces the scattering to 50% of that predicted using bulk 
phonons and the predicted mobility is significantly increased. 

1. Introduction 

The novel features of a superlattice (narrow miniband width, highly anisotropic band 
structure and much reduced Brillouin zone width in the growth direction) have led to 
a great deal of interest in their properties. Electron transport perpendicular to the 
superlattice layers has been the subject of many experimental and theoretical studies. 
In polar semiconductors at room temperature electron-Lo phonon scattering is the 
dominant scattering mechanism. This is also assumed to be true for superlattices made 
of polar semiconductor materials. Several authors have shown that the form of the optic 
lattice vibrations of superlattices strongly deviates from that in the corresponding bulk 
materials. The effect of this on scattering rates have been calculated [1-4]. However, 
previous calculations of electron mobilii ies in superlattices have assumed bulk phonons 

In this paper the effect of the superlattice structure on both electrons and optical 
phonons is taken fully into account in a lattice matched GaAs/Gal -,AI,As superlattice 
at 300 K subjected to a small electric field in the direction perpendicular to the layers. 
Experimental studies have shown evidence of Bloch conduction in this system [7,8]. We 
therefore use the Boltzmann transport equation to calculate electron mobilities in the 
superlattice growth direction with polar optical phonon scattering taken as dominant. 
Attention is focused on low doping levels so that screening and inter-band scattering can 
be neglected. 

[5,61. 

2. Electrons 

Effective mass theory is used to calculate the miniband structure and envelope function 
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Figure 1. The Kronig-Penney potential. 

of the electron states. For simplicity the small difference in effective mass between the 
GaAs and Gal-xAI,As layers is ignored. The superlattice potential is of the Kronig- 
Penney type with the same periodicity as the superlattice (see figure 1). In the manner 
of Warren et a1 and Palmier et a1 [5,6] the miniband dispersion is represented by the 
phenomenological form 

E k  = (fi2ki/2m*) A ( l  - COS kz l )  (1) 
where 2A is the miniband width obtained from the Kronig-Penney model. The barrier 
height is taken to be 250meV which corresponds to an A1 concentration in the 
Al,Gal...xAs layer of x = 0.3 [27]. 

The envelope function is written in the tight binding formalism as: 
n = + N / 2  

\vk = qVexp( ik I1  - X I , )  2 $ ( z  - nl) exp(ik,nl) (2) 
n = - N / 2  

where kll = k,i + k, j ,  XI[ = x f  + y j  and $ ( z )  is the normalised eigenfunction of the Ham- 
iltonian for a single potential well of width 2a and barrier height 250 meV centred at z = 
0. The normalisation constant in (2) is determined for the case when the overlap of 
adjacent $s is ignored so that 

Q ( Z  - nZ)Q(z - ml) = S,, ,Q~(Z - nl) (3) 

3. Scalar potential of the optic phonon modes 

The optic vibrational modes of thin layer structures are known to deviate strongly 
from those of the corresponding bulk modes [9]. This has been the subject of much 
investigation [ 1c-181. Until recently, however, most studies have used macroscopic 
models or linear chain models. The difficulty with macroscopic models is that no unam- 
biguous formulation of the boundary conditions exists. While, simple linear chain 
models do not take proper account of the Coulomb interaction and are only applicable 
when the phonon wave vector is in the growth direction. 

The validity of these models remains in doubt and their predictions are often quite 
different. In particular there has been controversy over the form of guided modes in 
heterostructures. The dielectric continuum model (DCM) predicts the vibrational modes 
to have antimodes in U, (the optical displacement in the superlattice growth direction) 
at the interfaces and nodes in the scalar potential [16-18]. However, other models 
predict that guided modes have nodes in U, at the interface and anti-nodes in the scalar 
potential [ 10-151. More realistic microscopic models have appeared [ 19-24]. They are 
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heavily numerical and intractable for transport calculations. Recently, however, a 
comparison of the DCM with one such microscopic model of the superlattice has been 
reported [21]. This has shown that while the optical displacement of the ions is not well 
described by the DCM, in the limit of vanishing bulk phonon dispersion, the scalar 
potential for the two models are in good agreement for both guided and interface modes. 
Fortunately it is the scalar potential which is important for studies of scattering rates and 
transport, Some authors [4, 101 have imposed the conditions that U, = Oat the interfaces 
for guided modes. This leads to a scalar potential which has anti-modes at the interfaces 
and thus an incorrect treatment of electron scattering. 

We have therefore used the DCM model to obtain the scalar potential associated with 
the normal modes of the superlattice phonons. In this model the Born and Haung 
phenomenological equations together with electrostatic boundary conditions are 
applied [25]. LO solutions are obtained when: 

K,(O)V2V(r)  = 0 (4) 
where K , ( w )  is the frequency dependent dielectric constant in material 1 (with i = 1 for 
GaAs and 1 = 2 for Ga,-,AI,As) and V(r )  is the scalar potential of the electric field 
associated with the LO phonons. The superlattice periodicity implies that V ( r )  must be 
of the form: 

v/ ( r )  = exp(iq11 * xIl)f(Z) 
where 

f ( z  + nl) = f (z)  exp(iQnl) 
with 1 denoting the periodicity of superlattice (see figure 1) and A being a mode label. 

We find that the superlattice optic phonons are of two types: guided and interface 
modes. For guided modes K,(o) = 0 in one of the superlattice materials in which the 
normal modes are confined, e.g. when w = w:$*’, we writef(z) =fG(z) with 

A G  cos(mm/2a), m = 1 , 3 . 5 . .  . 
AG sin(mnz/2a), m = 2 , 4 , 6 . .  . 

(region 1) 
(6) 

0 - I  + a < z < -a  (region 2). 
Similarly, for interface modes V2V(r )  = 0 and we writef(z) = fi(z) with 

In both cases the normal modes can be expressed in terms of a scalar potential V , ( r )  by 
writing 

W,, ( r )  = C r ( - V V k ) )  (8) 
where c, is material dependent and is given by the Born and Huang phenomenological 
equations [25]: 

C r ( W 1 )  = W,,,[&O(KO, - K 4 1 ’  ? [ P r , ( 4  - 4 0 , ) 1 - ” 2 .  (9) 
When the normal modes are quantised (see [26] and the Appendix) we find that the 
scalar potential is given by 
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4. Scattering rates and transport theory 

Having obtained the scalar potential we can now calculate the scattering rates by using 
Fermi’s golden rule. The  details are given in the Appendix with the following results. 
For guided modes: 

For interface modes: 

where 

The scattering rates given for intra-band scattering in the lowest miniband. Since we are 
assuming non-degenerate statistics inter-band scattering is not considered 

If a small electric field is applied to the superlattice perpendicular to the layers, the 
electron distribution function can be written as 

f = f u  + g (13) 

where AI is the Fermi-Dirac distribution and g is the first order perturbation. From the 
linearised Boltzmann transport equation, assuming non-degenerate statistics. i .e. .  
file 1. we have: 

e dfo g ( k )  = z ( k )  j g ( k ’ ) P j k ‘ .  k )  d 3 k ‘  + -Er  h 
- d k ,  

where P ( k .  k ’ )  = ( V / 8 n ‘ ) T ( k .  k ’ )  and 

t-’ ( k )  = P ( k ,  k ’ )  d ‘ k ’  (15) 

is the lifetime of electron state k .  
In calculating the lifetimes the scattering rates given in (11) and (12) are used. 

For guided modes only the odd-m modes contribute to intra-band scattering [ 11, and 
scattering rates decrease significantly as m increases, thus only the m = 1 mode is 
considered. However, the interface modes dominate the scattering. There are four 
interface modes and their frequencies approach the bulk optical frequencies of the 
constituent materials as q+ U, (21). It is in this limit when scattering is largest. The two 
interface modes whose frequencies are near CO$&*’ and w$$~’*’ hardly contribute to the 
scattering since C , ( O ~ ~ . ~ ~ )  -+ x ,  Scattering is due mainly to the mode whose frequency is 
near ufLGdAs. The scalar potential associated with this mode is approximately symmetric 
in the GaAs  layer as q-+ 0. The  mode whose frequency is near wf$’ has a scalar 
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Figure 2. Mobility at 300 K as a function of superlattice periodic length. The superlattice 
material parameters are taken from [14]. Full curve: DCM; broken curve: bulk phonons. 

potential which is approximately antisymmetric in the GaAs layer when q+ 0, and 
therefore makes only a weak contribution to the scattering. For simplicity the weak 
dependence of the interface mode frequency wh on the wavevector is ignored and we 
put wi. = 

The first order perturbation in the electron distribution g is calculated from (14) 
using an iterative numerical technique [6]. From g the mobility perpendicular to the 
superlattice layers is easily calculated. The result is shown as a function of I when a = b 
in figure 2. For comparison the mobility when bulk phonons are assumed is also shown. 

(= w:;~’) for the symmetric (antisymmetric) modes respectively. 

5. Discussion 

In this paper we have taken into account the effect of the superlattice structure on both 
electron and phonon properties. We see from figure 2 that this leads to a 50% reduction 
in the scattering rate. Due to the highly anisotropic superlattice miniband structure and 
the inelastic nature of electron-io phonon scattering no relaxation time approximation 
exists. Hence an iterative scheme is used to derive the perturbed electron distribution 
function and calculate the electron mobility. The theory needs to be extended to allow for 
finite bulk phonon dispersion. This is particularly important for the GaAs/Gao ,AI(, 3 A ~  
superlattice because the optic phonon branches of bulk GaAs and GaO ,AI(, 3 A ~  overlap. 
We note here that, even in frequency regions where the optical bulk branches overlap, 
confined modes still exist [23]. 

To compare our results with experiment more experimental data is needed. It may 
also be necessary to take account of other scattering mechanism besides LO phonon 
scattering. In particular scattering due to interface roughness may be important for 
superlattices with narrow layers [28]. We relegate these problems to another paper. 

Appendix 

Starting from (8) we write 
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To ensure that WA(r)  is normalised to unity in the whole superlattice we impose the 
following condition onf(z): 

where V is the volume of the superlattice. If the total ionic displacement is written in 
terms of the normal modes as 

thus 

for guided modes AG in (6) is given by (17). For interface modes AI,  B,, CI and D1 are 
obtained by the equations expressing the electrostatic boundary conditions (20) and 
(17): 

Non-trivial solutions of (20) are obtained when the following dispersion equation is 
satisfied: 

+ cosh(2ql;b) cosh(2qll~) = COS(QL). (21) 

Here the dielectric constant in material i is given by 

K , ( W ? , )  = KXi + (KO, - K X J 1  - (WE. / W T 0 , ) 2 1 - ’ .  (22) 

The electron-optical phonon coupling term H,, in the Hamiltonian is given by He, = 
-eV and the scattering rate derived from Fermi’s golden rule is 

T(k ,  nAlk’n1) = (27d/h)/(k’, niJH, ,Jk ,  n ~ ) / ~ 6 [ & k ,  - & k  + (n: - n),)hW;,].  (23) 

Simplification of (23) gives 
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Finally, by making use of (3) and taking @ ( z )  to be significant only when Iz/ < 1/2 we 
obtain 
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